Mechanics

Oscillations
Simple and compound pendulum

Oscillations of a rod pendulum

Description from CASSY Lab 2

For loading examples and settings, please use the CASSY Lab 2 help.

Oscillations of a rod pendulum

can also be carried out with Pocket-CASSY

Experiment description

The equation of motion for a physical pendulum with moment of inertia J, mass m and distance s between fulcrum and center of gravity
$M=J \cdot \alpha^{\prime \prime}=-m \cdot g \cdot s \cdot \sin \alpha$
describes for small deflections ($\sin \alpha \approx \alpha$) an harmonic oscillation with period of oscillation
$\mathrm{T}=2 \pi \cdot \mathrm{sqrt}(\mathrm{J} / \mathrm{mgs})$.
For a better understanding, the reduced pendulum length $I_{r}=\mathrm{J} / \mathrm{ms}$ is introduced. Then the period of oscillation is
$\mathrm{T}=2 \mathrm{~m} \cdot \mathrm{sqrt}\left(\mathrm{I}_{\mathrm{r}} / \mathrm{g}\right)$.
For mathematical pendulums, the entire pendulum mass is concentrated at a single point. It has therefore the moment of inertia $J=\mathrm{ms}^{2}$ and the reduced pendulum length is $\mathrm{I}_{\mathrm{r}}=\mathrm{J} / \mathrm{ms}=\mathrm{s}$, which is equivalent to the distance between the pendulum mass (center of gravity) and fulcrum.
A physical pendulum with the reduced pendulum length I_{r} corresponds to a mathematical pendulum of this length.
In this experiment the reduced pendulum length is determined from the measured period of oscillation and compared with the reduced pendulum length.

Equipment list

1	Sensor-CASSY	524010 or 524013
1	CASSY Lab 2	524220
1	Rotary motion sensor S	524082
1	Physical pendulum	34620
1	Stand rod, $25 \mathrm{~cm}, \mathrm{~d}=10 \mathrm{~mm}$	30126
2	Stand bases MF	30121
1	PC with Windows XP/Vista/7/8	

Experiment setup (see drawing)

The pendulum is screwed on the axle of the rotary motion sensor.

Carrying out the experiment

\square Load settings

- Define the zero point in the equilibrium position of the pendulum $(\rightarrow \mathbf{0} \leftarrow$ in $\underline{\text { Settings } \alpha A 1) ~}$
- Deflect the pendulum by approx. 5° only and release
- Start the measurement with © . The measurement will stop automatically after 10 s
- Repeat the measurement without the mass or with a further mass added

Evaluation

After several oscillations, the duration of these oscillations can be determined by means of a vertical line and from this the period of oscillation. In the example, the result is $T=0.840 \mathrm{~s}$. With $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ this results in a reduced pendulum length of $I_{r}=g \cdot T^{2} / 4 \pi^{2}=17.5 \mathrm{~cm}$.

This corresponds well to the calculated (using an approximation) pendulum length I_{r} of the rod. The moment of inertia of the rod for rotation through the center of gravity is $J_{S}=1 / 12 \cdot \mathrm{ml}^{2}$. The axis of rotation of this pendulum is, however, $s=1 / 3 \cdot \mid$ displaced from the center of gravity. According to Steiner's theorem this gives $J=J_{S}+\mathrm{ms}^{2}=7 / 36 \mathrm{ml}^{2}$ and $\mathrm{Ir}=7 / 36 \cdot \mathrm{ml}^{2} / \mathrm{ms}=7 / 12 \cdot \mathrm{I}=17.5 \mathrm{~cm}$ (for $\mathrm{I}=30 \mathrm{~cm}$).
Conversely, from the calculated reduced pendulum length and the measured period of oscillation the earth's acceleration due to gravity can also be calculated $g=I_{r} \cdot 4 \pi^{2} / T^{2}$.

Experimental determination of the reduced pendulum length

If mass m_{2} is shifted on the pendulum rod until the period of oscillation T compared to the rod without added mass is unchanged, then the reduced pendulum length I_{r} will also be unchanged. The position x when the (point) mass is now found increases the moment of inertia of the pendulum by $J_{2}=m_{2} \cdot x^{2}$. Because the reduced pendulum length I_{r} has not been changed, the following applies
$\mathrm{I}_{\mathrm{r}}=\mathrm{J} / \mathrm{ms}=\left(\mathrm{J}+\mathrm{J}_{2}\right) /\left(\mathrm{m}+\mathrm{m}_{2}\right) / \mathrm{s}^{\prime}$
with s' being the distance between the new center of gravity and the fulcrum, therefore $s^{\prime}=\left(m \cdot s+m_{2} \cdot x\right) /\left(m+m_{2}\right)$. From this you get
$\mathrm{J} / \mathrm{ms}=\left(\mathrm{J}+\mathrm{m}_{2} \cdot x^{2}\right) /\left(m \cdot \mathrm{~s}+\mathrm{m}_{2} \cdot x\right)=\mathrm{J} / \mathrm{ms} \cdot\left(1+\mathrm{m}_{2} \cdot x^{2} / \mathrm{J}\right) /\left(1+\mathrm{m}_{2} \cdot x / m s\right)$ or $m_{2} \cdot x^{2} / J=m_{2} \cdot x / m s$, therefore
$x=\mathrm{J} / \mathrm{ms}=\mathrm{I}_{\mathrm{r}}$.
The (point) mass is then exactly located at the reduced pendulum length. But, because in reality it has a finite size, this is only an approximation.

