P1.5.1.3

Mechanics

Oscillations Simple and compound pendulum Oscillations of a rod pendulum

Description from CASSY Lab 2

For loading examples and settings, please use the CASSY Lab 2 help.

CASSY Lab 2

Oscillations of a rod pendulum

can also be carried out with Pocket-CASSY

Experiment description

The equation of motion for a physical pendulum with moment of inertia J, mass m and distance s between fulcrum and center of gravity

 $M = J \cdot \alpha'' = -m \cdot g \cdot s \cdot \sin \alpha$

describes for small deflections (sin $\alpha \approx \alpha$) an harmonic oscillation with period of oscillation

T = $2\pi \cdot \text{sqrt}(J/\text{mgs})$.

For a better understanding, the reduced pendulum length $I_r = J/ms$ is introduced. Then the period of oscillation is

$T = 2\pi \cdot sqrt(I_r/g).$

For mathematical pendulums, the entire pendulum mass is concentrated at a single point. It has therefore the moment of inertia $J = ms^2$ and the reduced pendulum length is $I_r = J/ms = s$, which is equivalent to the distance between the pendulum mass (center of gravity) and fulcrum.

A physical pendulum with the reduced pendulum length Ir corresponds to a mathematical pendulum of this length.

In this experiment the reduced pendulum length is determined from the measured period of oscillation and compared with the reduced pendulum length.

Equipment list

1	Sensor-CASSY	524 010 or 524 013
1	CASSY Lab 2	524 220
1	Rotary motion sensor S	524 082
1	Physical pendulum	346 20
1	Stand rod, 25 cm, d = 10 mm	301 26
2	Stand bases MF	301 21
1	PC with Windows XP/Vista/7/8	

Experiment setup (see drawing)

The pendulum is screwed on the axle of the rotary motion sensor.

Carrying out the experiment

- Load settings
- Define the zero point in the equilibrium position of the pendulum ($\rightarrow 0 \leftarrow$ in <u>Settings $\alpha A1$)</u>
- Deflect the pendulum by approx. 5° only and release
- Start the measurement with ⁽¹⁾. The measurement will stop automatically after 10 s
- Repeat the measurement without the mass or with a further mass added

Evaluation

After several oscillations, the duration of these oscillations can be determined by means of a <u>vertical line</u> and from this the period of oscillation. In the example, the result is T = 0.840 s. With g = 9.81 m/s² this results in a reduced pendulum length of $I_r = g \cdot T^2/4\pi^2 = 17.5$ cm.

This corresponds well to the calculated (using an approximation) pendulum length I_r of the rod. The moment of inertia of the rod for rotation through the center of gravity is $J_s = 1/12 \cdot ml^2$. The axis of rotation of this pendulum is, however, $s = 1/3 \cdot l$ displaced from the center of gravity. According to Steiner's theorem this gives $J = J_s + ms^2 = 7/36 ml^2$ and $Ir = 7/36 \cdot ml^2 / ms = 7/12 \cdot l = 17.5$ cm (for l = 30 cm).

Conversely, from the calculated reduced pendulum length and the measured period of oscillation the earth's acceleration due to gravity can also be calculated $g = I_r \cdot 4\pi^2/T^2$.

Experimental determination of the reduced pendulum length

If mass m_2 is shifted on the pendulum rod until the period of oscillation T compared to the rod without added mass is unchanged, then the reduced pendulum length I_r will also be unchanged. The position x when the (point) mass is now found increases the moment of inertia of the pendulum by $J_2 = m_2 \cdot x^2$. Because the reduced pendulum length I_r has not been changed, the following applies

$$I_r = J/ms = (J + J_2)/(m + m_2)/s^2$$

with s' being the distance between the new center of gravity and the fulcrum, therefore $s' = (m \cdot s + m_2 \cdot x)/(m + m_2)$. From this you get

 $J/ms = (J + m_2 \cdot x^2)/(m \cdot s + m_2 \cdot x) = J/ms \cdot (1 + m_2 \cdot x^2/J)/(1 + m_2 \cdot x/ms) \text{ or } m_2 \cdot x^2/J = m_2 \cdot x/ms, \text{ therefore}$

 $x = J/ms = I_r$.

The (point) mass is then exactly located at the reduced pendulum length. But, because in reality it has a finite size, this is only an approximation.